Effectiveness of a theory-based tailored individual and family self- management education in adults with uncontrolled diabetes: A randomized controlled trial by Institut Ilmu Kesehatan Bhakti Wiyata Kediri **Submission date:** 02-Oct-2025 08:51AM (UTC+0700) **Submission ID:** 2503365077 File name: Paper_3_Tier_1_-_ANGGRAINI_DYAH_SETIYARINI.pdf (736.19K) Word count: 8797 Character count: 47307 Contents lists available at ScienceDirect # International Journal of Nursing Sciences journal homepage: http://www.elsevier.com/journals/international-journal-of-nursing-sciences/2352-0132 # Research Paper # Effectiveness of a theory-based tailored individual and family selfmanagement education in adults with uncontrolled diabetes: A randomized controlled trial Yohanes Andy Rias a,b,c, Ratsiri Thato a,c,*, Margareta Teli d, Ferry Efendi e,f - ^a Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand ^b Faculty of Health, College of Nursing, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri, Indonesia ^c Center of Excellence for Enhancing Well-being in Vulnenable and Chronic Illness Population, Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand ^a Nursing School, Polytechnic of Health Ministry of Health Kupang, Kupang, Indonesia - ^e Department of Advanced Nursing, Faculty of Nursing, Universitas Airlangga, Surabaya, Indonesia ^f School of Nursing and Midwifery, La Trobe University, Australia # ARTICLE INFO # Article history: Received 21 January 2025 Received in revised form 20 May 2025 Accepted 10 June 2025 Available online 10 July 2025 Keywords: Diabetes distress Individual and family self-management Nursing Triglyceride-glucose index Type 2 diabetes # ABSTRACT Objectives: This study aimed to determine the effectiveness of an individual and family self-management (IFSM) education program on triglyceride-glucose (TyG) index, self-management, and diabetes distress among adults with uncontrolled diabetes mellitus type 2 (T2DM). Methods: A multicentre randomized controlled trial was employed. The study included 68 dyads (adults with uncontrolled T2DM and one family member) that were randomly allocated to the intervention (n = 34) and control groups (n = 34) from March to September 2024. Participants in the intervention group received an 8-week IFSM education program, whereas those in the control group received standard routine care. An automated hematology analyzer XP-100 was used to evaluate triglyceride and fasting blood glucose levels. The Diabetes Distress Scale and Diabetes Self-Management Questionnaire were used to measure diabetes distress and self-management, respectively. Results: A total of 67 participants completed the intervention. The generalized estimating equation demonstrated a significant interaction between group and time. The IFSM education intervention group had a higher diabetes self-management ($\beta=16.68; 95\% I=15.23, 18.09; P<0.001$), lower diabetes distress ($\beta=-30.74; 95\% I=30.25, -28.90; P<0.001$), and lower TyG index ($\beta=-1.97; 95\% I=2.41, -1.53; P<0.001$) than the control group. CI = -2.41, -1.35; P < 0.001) full in the collino group. Conclusions: The findings documented the capacity of IFSM education to reduce TyG and diabetes distress, which could potentially escalate diabetes self-management among individuals with 16 M. 0 2025 The Authors. Published by Elsevier B.V. on 23.1 for the Chinese Nursing Association. Ints is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). # What is known? - Empowering an individual and family self-management (IFSM) education program through well-structured training is critical for effectively managing uncontrolled diabetes mellitus type 2 (T2DM). - The triglyceride-glucose (TyG) index is an effective tool marker for evaluating glycemic regulation in individuals with T2DM and is strongly connected with glycated hemoglobin levels. - The diabetes distress and self-management of individuals with T2DM are frequently overlooked, and it requires that nursing plans need to be developed to address this issue. * Corresponding author. Faculty of Nursing. Chulalongkorn University, Bangkok, Thailand. E-mail addresses: ratsiri.T@chula.ac.th, ratsiri99@gmail.com (R. Thato). Peer review under responsibility of Chinese Nursing Association. · Our findings highlight the potential effectiveness of the IFSM education program in impro 30 g diabetes self-management and alleviating the TyG index and diabetes distress. 2525-0132/0 2025 The Authors. Published by Elsevier B.V. on behalf of the Chinese Nursing Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/40)). It is feasible to implement an IFSM education program among Indonesians with uncontrolled T2DM. # 1. Introduction The International Diabetes Federation (IDF) reported that 536.6 million individuals globally hac diabetes mellitus (DM) by 2021, projected to increase to 783.2 million by 2045 [1]. Diabetes megislitus type 2 (T2DM) represents 90 %–95 % of all DM cases [2]. In 2019, Indonesia ra 43 d seventh worldwide in DM prevalence, with 10.7 million, and is predicted to increase to 16.6 million by 2045 [3]. A total of 87.5 % of individuals with T2DM have uncontrolled glycemic targets [4]. Uncontrolled glycemia leads to macrovascular and microvascular complications [5]. These complications may greatly reduce the quality of life and impose a greater healthcare cost on healthcare systems [5.6]. Consequent [62] is essential to maintain effective glycemic control to prevent complications and improve the quality of life among indiv 53 lis with T2DM. Diabetes self-management (DSM) is a Key strategy of glycemic Diabetes self-management (DSM) is a key strategy of glycemic control that enables the main [1, nec of a controlled glycemic target through comprehensive self-monitoring of blood glucose, medication adherence, and exercise [7]. The DSM is crucial for cultivating and maintaining healthy lifestyle behaviors, which can prevent and minimize acute and chronic complications through improved metabolic control [8]. However, it is challenging for individuals with T2DM to maintain self-management, especially the balance between physical activity of the control [8]. The individual and family self-management (IESM) education program is a novel theory with various benefits and comprehensive and integrative approaches to increasing DSM [10,11]. In Indonesia, family members play a crucial role in assisting other family members with illnesses such as T2DM, and family-focused healthcare programs, [43] ticularly diabetes management, are extremely important [12]. Focusing on individuals and dyads within the family, the IFSM education program [5] grates and expands prior research on individual and family self-management, covering self-management, self-efficacy, self-regulation, and family support [10]. However, most in terventions focus on the individual patient and do not integrate family members [11,13,14]. Consequently, they may not be sustainable in family-centered Indonesian culture. A previous study has demonstrated that DSM significantly correlates with glycated hemoglobin (HbArc) [15] and fasting blood glucose [9]. Insulin resistance (IR) and HbArc are the gold standard and essential pathogenetic mechanisms of T2DM development, but their high cost and complexity rend [5] hem unsuitable for clinical investigations [16]. As detecting the triglycerideglucose (TyG) index is inexpensive, reproducible, and easy to perform [17], researchers have concluded that the index has potential as an IR alternative and HbArc [18]. Meanwhile, biobehavioral approaches present a significant challenge, necessitating the integration of biological markers with psychological and behavioral modifications in health-related outcomes [19]. To address this challenge, the TyG index and behavior-related health outcomes can be examined in individuals with uncontrolled T2DM. Diabetes distress represents a multitude of fears, anxieties, and worries encountered by individuals with T2DM as they navigate a predominantly self-managed condition and its significant complications [20]. A meta-analysis revealed that the estimated prevalence of diabetes distress among individuals with T2DM is approximately 36 %, indicating that this psychosocial issue is prevalent within the population [21]. Diabetes distress frequently stems from concerns regarding dietary and potential complications [22] and correlates with inadequate self-care, elevated HbA1c levels, IR, and fasting blood glucose [20,21]. This study aimd to compare the TyG index, self-management behaviors, and diabetes distress among adults with uncontrolled T2DM who receive IFSM education versus those with only standard routine care. # 2. Methods # 2.1. Study design This study used a two-arm, single-blind, randomized controlled 7 al (RCT) with 8-week interventions and was reported by the consolidated Standards of Reporting Trials (CONSORT) [23] and the Template [63] ntervention Description and Replication (TIDieR) checklist [24]. The trial was registered in the Thai Clinical Trials Registry (TCTR20240321003). # 2.2. Study participants 37 From March to September 2024, participants with uncontrolled IZDM and their family members were recruited from four health community clinics using stratified multistage cluster sampling in East Java, Indonesia. In the first stage, we selected the east, middle, and west regions. In the second stage, we randomly selected seven health community clinics for data collection, three of which declined to participate in the study. Eligible participants were recruited according to the following inclusion criteria: 1) adults with uncontrolled T2DM with \$\frac{1}{2} \text{N} \cdot \{ \text{1}} \{ \text{2}} \text{3}} \text{2} The inclusion criteria for the family members were as follows: 1) living in the same residence and having regular contact with
the patient, with the duration of care at least one year; 2) aged 21–60 years; 3) being a spouse, child, sibling, or other close relatives (the family members were cheep by patients); 4) having a smartphone with internet access and 5) willingness to provide informed consent. The exclusion criteria were: 1) previously receiving selfmanagement interventions; 2) having a chronic disease (e.g., T2DM, stroke, and cardiovascular disease); and 3) having a disability, auditory deficiencies, or dementia. # 2.3. Sample size The sam 20 size calculation G*power 3.1 software was estimated $\frac{1}{2}$ th a power of $(1-\beta)=0.90$, a significance level $\alpha=0.01$, and an effect size (f)=0.35 [26], which was 2 lculated from the primary outcome of the DSM intervention, yielding a required sample of 56 dyads (adults with uncontrolled T2DM and one family member). An attrition rate of 20 % was added, resulting in a prescribed sample of 34 dyads per group (68 dyads in total). A total of 198 participants with T2DM were recruited from four community health clinics, including 119 individuals in urban areas (two community health clinics in Kediri City) and 79 individuals in rural areas (one community health clinics in Kediri City) who were identified based on their medical records. ### 2.4. Randomization and blinding A research randomizer with stratified block randomization www.randomizer.org was created for the arms assignment sequence (ratio of 1:1), carried out by a research assistant uninvolved in data collection. A clinical nurse recruited potential subjects. Once an individual with uncontrolled T2DM agreed to participate in the study, research information and consent forms were provided. Using an opaque and sealed envelope, the clinical nurse allocated the participants to one of the groups based on the sequence in which they entered the intervention and control. The nature of the interventions allowed no participant concealment. # 2.5. Interventions # 2.5.1. The intervention group The IFSM education program was designed based on the IFSM middle-range theory (Appendix A). This theory contributes to the self-management literature by emphasizing individuals, familial dyads, of the family unit collectively, clarifying the process components of self-management, and advocating for the consideration of proximal self-management behaviors and distal objectives with quality of life [10]. The program was undertaken for eight weeks and provided four core components, including the education of knowledge and belief, training of self-efficacy improvement, self-regulation skill improvement, and social facilitation improvement via small group discussions involving approximately 8-9 dyads, family telephone calls, the delivery of diabetes infographics (detailed in Appendix B), and motivational card messages by WhatsApp (detailed in Appendix C). Participants also received diabetes work modules developed based on "Pedoman Penge" and nan Pencegahan Diabetes Mellitus Type 2 di Indonesia 2021. "a guideline by the 15 pensian Society of Endocrinology [27]. Intervention materials were derived from multiple references, such as the IFSM theory [10] and the National Standards for Diabetes Self-Management Education and Support [28]. A panel of four experts in Indonesia verified the content and cultural validity of the work modules following their review by a panel of two diabetes self-management experts. Ten patient-carer dyads evaluated the work modules for comprehensibility and readability, reporting that the resources enhanced their knowledge and self-management abilities. The first module consisted of two parts. The first part addresses key information on diabetes, including its definition, different types, diagnostic methods, recognition of signs and symptoms, and awareness of potential complications. The second part discusses DSM behaviors, including walking exercise, diabetic diet, medication, blood sugar monitoring, positive affirmations, and the role of family support. Furthermore, the second module provided self-regulation skills and capabilities related to DSM. The module contained the following elements: a worksheet that listed DSM goals for personal and family and a physical activity planning section that specified activity goals. The diabetes meal objective and plan could be written in a spreadsheet for planning weekly meals and a guide for adhering to a nutritious diet while self-monitoring blood glucose strategies could be written down in a diary for documenting blood sugar levels and a self-monitoring timetable. In addition, regarding physical activity planning, we provided a weekly planner for diabetic medication consumption to facilitate planning and management. It also provides a weekly monitoring report to facilitate progress reviews, particularly emphasizing self-reminders of self-management behaviors. Intervention call scripts were also provided by WhatsApp. WhatsApp is the most popular and accessible social communication media platform in Indonesia. A previous study indicated that WhatsApp was useful for medical education [29]. WhatsApp is a complimentary social networking platform available through smartphones. It provides instant messaging, phone and video conversations, group chats, and file sharing, which can be utilized in delivering DSM education to individuals with T2DM, especially in areas with limited access to in-person DSM education programs [29]. Telephone calls by WhatsApp as follow-up were intended to enhance patient application of the patients and their family members to describe their recent experiences with their weekly dietary plans, regular physical activity schedules, diabetic medications, problem-solving, and blood glucose monitoring. They were also asked to describe their challenges when combining their weekly nativition plans with exercise schedules, diabetes medications, and blood glucose monitoring. At the end of the conversation, we expressed our admiration for their admeracte to weekly planning and accomplishments through gratitude and compliments. The participants in the intervention group also received routine care. The researcher, clinical nurse, research assistant, and physician held meetings to review procedures, confirm competency assessments, and equalize perceptions of the investigation protocol and process, thereby establishing research fidelity. # 2.5.2. The control group The control group received standard routine care from nursing educators, encompassing blood glucose monitoring, blood pressure, n 24 ng assessments, and medication adherence. The control group participants were instructed to maintain their usual diet and physical activity, and the research assistant monitored their daily activities and dietary intake. The research assistant also encouraged the participants to adhere to their usual diet and routines for safety management. ### 2.6. Measures ### 2.6.1. Demographic data The research assistant collected data using a questionnaire containing questions concerning participants' demographic cliratetristics collected at baseline and covered participants' age, gender, diabetes duration, duration of caring, body mass index (BMI), income, marital status, educational level, Javanese and Muslim ethnicity, diabetes complications, and diabetes medication [30,31]. # 2.6.2. Triglyceride-glucose index Participants were invited to a clinical measurement session following a 12 h fasting period. The venipunctures were conducted by certified phlebotomists. Biochemical analysts and qualified phlebotomists werd 56 mded to the assignment of the intervention group. Biochemical parameters in 6 ded the fasting blood glucose (FBG) and triglyceride (TG) levels. The TyG index was calculated as in [fasting triglyceride (Tg) levels. The TyG index was calculated as and TG levels were analyzed using an automated hematology cell counter (XP-100). # 2.6.3. Diabetes self-management The Diabetes Self-Management Questionnaire (DSMQ) measures self-management in patients with T2DM [32]. It accurately measured self-behaviors related to glycemic management with 16 items classified into four domains: dietary control (four items), healthcare use (three items), physical activity (three items), and glucose management (five items). One separate question (item a mber 16) is included in the sum scale. Each question was scored on a four-point like 1, cale (0–3), with a score ranging from 0 (does not relate to me) to 3 (applies to me very much). The total possible scores range from 0 to 48, with higher scores indicating better diabetes self-n 48 agement. The Indonesian version of the DSMQ for T2121 has a Cronbach's α coefficient of 0.84 [4]. This study's total Cronbach's α coefficient was 0.92, which assumes high internal consistency. # 2.6.4. Diabetes distress Diabetes distress were determined using the Diabetes Distress Scale (DDS), a 17-item self-report instrument that measures the experience of diabetes distress over the preceding month across four distinct domains. Each domain represented a different source of the negative emotional construct: emotional burden (five tiems), health professional-related distress (four tiems), regimenrelated distress (five items), and interpersonal distress (three items). Responses were evaluated on a Likert scale from 1 (not a 57 blem) to 6 (a very serious problem). The total possible scores range from 17 to 102, with higher some reflecting greater diabetes distress [33]. We calculated the total DDS mean score and the mean score of each domain-specific subscale by dividing the total score of the item 12 the number of items (ranging from 1 to 6). This study's total cronbach's a coefficient was 0.82, indicating high internal consistency. ### 2.7. Data collection Data were cotated by the research assistants, blinded to the participants of two groups, at baseline and after the 8-week intervention. Both groups were assessed at baseline for socio-demographic characteristics,
self-management, and diabetes distress. The questionnaire was distributed to patients in paper form and took approximately 15 min to complete. Research assistants assisted respondents and monitored completion to ensure accuracy. T2DM patients scheduled for routine medical check-ups at four participating community health clinics were recruited by a clinical nurse. The physicians at these clinics introduced the recruiter, who then extended the invitation to eligible patients. After the 8-week intervention, research assistants were blinded to the study hypotheses and patient classification, and they evaluated the patients' TyG Index, self-management, and diabetes distress. ### 18 2.8. Data analysis Statistical analyses were conducted using SPSS (version 25.0, Chicago, IL, USA), with a P < 0.05, indicating a statistically \$42] ficiant state. Continuous and categorical data were presented using descriptive statistics of the mean (standard deviation) and n (%), respectively. We performed a chi-squared test, an independent sample t-test, and a one-way analysis of variance (ANOVA) to compare the sociodemographic and baseline results among the two groups. Generalized estimating equation (GEE) models employing suitable link functions and distribution assumptions were utilized to compare outcome variations over time and among the two groups. Data loss due to follow-up attrition was considered randomly missing, and the analysis was conducted using an intention-to-treat strategy. # 2.9. Ethical consideration The study protocol was approved by the Universitas Strada Indonesia, Kediri (001050/EC/KEPK/I/03/2024). Each participant provided written or verbal consent after receiving informa 22 about the research. The Ethical Review Board followed the # Declaration of Helsinki. ### 3 Results # 3.1. Characteristics of the participants We excluded 130 individuals from the study; of these, 118 did not meet the inclusion criteria, and 12 did not provide informed consent. In total, 68 dyads with uncontrolled $\frac{126}{100}$ M were randomly assigned to the IFSM education program intervention group (n=34) and the control group (n=34). One participant in the control group was lost to follow-up (due to the move to live) at week 8 (Appendix D). Comparisons of the sociodemographic and clinical variables of $\frac{1}{42}$ rticipants with T2DM and the baseline outcomes between the two groups are summarized in Table 1. Moreover, all enrolled respondents were of Javanese and Muslim ethnicity. # 3.2. Effectiveness of the intervention Table 2 shows there were no significant differences (P > 0.05) in all outcomes at baseline, but significant differences (P < 0.05) of TyG index, DSM, and diabetes distress scores between the work groups after intervention. The GEE analysis revealed that there were significant within-time-induced differences in DSM (dietary control, physical activity, glucose management) and total diabetes self-management) and diabetes distress (emotional burden, regimen-stated distress, interpersonal distress, and total diabetes distress) fore and after the 8-week intervention. However, no significant within-group-induced differences in all outcomes before and ser the 8-week intervention. Finally. The significance of the interaction group and time analysis for all outcomes revealed that participants in the intervention group exhibited significant reductions in TyG index and diabetes distress and increased DSM. Individuals in the IFSM education program had a lower TyG index than the control group, and the program decreased the TyG index (52) e by 1.97. Additionally, the GEE revealed that participants in the intervention group had higher dietary control scores, health 3re use, physical activity, glucose management, and total DSM after the 8-week intervention than those in the control group. Furthermore, compared to the control group, participants in the IFSM education arm also has 53 gnificant declines in emotional burden, health professional-related distress, regimen-related distress, interpersonal distress, and total diabetes distress after the 8-week intervention (Table 2). # 4. Discussion We found that the IFSM education program effectively decreased the TyG index. In line with a previous study reported that diabetes education programs significat 136 decreased HbA1c, fasting blood glucose, and triglyceride [34]. The TyG index serves as a significant marker of IR, reflecting the complex relationship between lipid and glucose metabolism and elements such as inflammation and oxidative stress [35]. Elevated triglyceride levels may elevate pro-inflammatory cytokines and exacerbate the inflammatory process within the body [36]. Inflammation can disrupt the insulin pathway and elevate insulin resistance and HbA1c [18]. An educational program might advise patients to improve their self-reg [3] tion skills by selecting healthier foods [37]. The high level of TyG index was sig 31 cantly correlated with unhealthy dietary patterns [38]. Thus, the relationship between diet and the TyG index may be explained by diet-induced changes $\textbf{Table 1} \\ \textbf{Comparisons of participants' and family members' sociodemographic and clinical data among the two groups ($n=68$ dyads). }$ | Characteristics | Participants with type 2 diabetes mellitus | | | Family members | | | | | |---|--|--------------------------|--------------------|----------------|-------------------------------|--------------------------|--------------------|-------| | | vention group $(n = 34)$ | Control group $(n = 34)$ | χ^2/t | P | Intervention group $(n = 34)$ | Control group $(n = 34)$ | χ^2/t | P | | Age (years) | 53.82 ± 3.92 | 54.59 ± 3.97 | 0.705ª | 0.427 | 47.06 ± 6.35 | 47.59 ± 5.35 | 1.632ª | 0.713 | | BMI (kg/m ²) | 25.41 ± 3.89 | 26.05 ± 3.81 | 0.350^{a} | 0.492 | 24.54 ± 2.22 | 24.43 ± 1.27 | 0.227a | 0.806 | | Diabetes duration (years) | 4.47 ± 1.76 | 4.09 ± 1.55 | 0.639a | 0.345 | | | | | | Duration of caring (years) | | | | | 4.44 ± 1.24 | 4.47 ± 0.99 | 2.147a | 0.914 | | Gender | | | | | | | | | | Female | 20 (58.8) | 22 (64.7) | 0.618 ^b | 0.249 | 19 (55.9) | 20 (58.8) | 0.060b | 0.806 | | Male | 14 (41.2) | 12 (35.3) | | | 15 (44.1) | 14 (41.2) | | | | Marital status | | | | | | | | | | Non-married | 17 (50.0) | 18 (52.9) | 0.808b | 0.059 | 19 (55.9) | 17 (50.0) | 0.236b | 0.627 | | Married | 17 (50.0) | 16 (47.1) | | | 15 (44.1) | 17 (50.0) | | | | Income (IDR) | | | | | | | | | | Low income | 15 (44.1) | 17 (50.0) | 0.627 ^b | 0.236 | 15 (44.1) | 18 (52.9) | 0.530 ^b | 0.467 | | High income | 19 (55.9) | 17 (50.0) | | | 19 (55.9) | 16 (47.1) | | | | Education | | | | | | | | | | ISCED <3 | 14 (41.2) | 16 (47.1) | 0.625 ^b | 0.239 | 13 (38.2) | 18 (52.9) | 1.482 ^b | 0.223 | | ISCED ≥3 | 20 (58.8) | 18 (52.9) | | | 21 (61.8) | 16 (47.1) | | | | Medication takes for diabetes | | | | | | | | | | Oral medications | 10 (29.4) | 8 (23.5) | 0.620 ^b | 0.956 | | | | | | Insulin injection | 13 (38.2) | 17 (50.0) | | | | | | | | Oral medications and insulin
injection | 11 (32.4) | 9 (26.5) | | | | | | | | Diabetes complication | | | | | | | | | | Yes | 22 (64.7) | 20 (58.8) | 0.803 ^b | 0.249 | | | | | | No 23 | 12 (35.3) | 14 (41.2) | 5.005 | 02270 | | | | | Note: a independent sample tetest. b chi-squared test. Data are n (3) or Mean ± SD. IDR = Indonesian rupiah rate. Low income was defined as being below the regional minimum salary. ISCED = International Standard Classification of Education. Duration of caring: minimum of 2 years and a maximum of 6 years. Diabetes duration: minimum of 2 years and a maximum of 9 years. in insulin levels, which, in turn, largely drive IR [39]. Previous studies have demonstrated that regular walking (150 min/week) significantly reduced the TyG index [35], oxidative stress, and inflammation markers, such as malondialdehyde, white blood cells, neutrophil-lymphocyte ratio, and fasting blood glucose [19,31]. Therefore, IFSM education might reduce the TyG index for several reasons, particularly because it enabled patients to regulate their dietary consumption and physical activity more effectively, which directly influenced their TyG index. Additionally, this finding confirms the potential of biological mechanisms, such as lipid metabolism, glucose metabolism, inflammation, and oxidative stress. These mechanisms provided convincing insights into the pathways influencing TyG in adults with uncontrolled T2DM. This study revealed that individuals with T2DM who partici- pated in an IFSM educational program demonstrated a statistically significant improvement in DSM scores, which aligns with a previous study [34]. Previous studies indicate familial participation in DSM interventions enhances familial support and improves diabetes self-regulation [39,40]. Moreover, individuals with T2DM who received family-based self-management support interventions showed significant changes (group-by-time interaction) in dietary control, physical activity, and overall self-management. However, they exhibited significantly decreased healthcare use (foot care and medication management) and glucose management, which became insignificant over time [13]. Another study indicated that participants receiving educationrelated medication adherence, medical nutrition therapy, and regular physical activity information to enhance glucose regulation and reduce diabetic complication risk exhibited significantly higher DSM scores than those receiving regular care [7]. In the interventions, patient-family dyads received motivation card messages from the health coaching session containing dyadic information to strengthen positive affirmations. They heard success stories told by those with successful diabetes management. The health coaching session focused on family-centered interventions integrated with familial values in coping mechanisms,
problemsolving strategies, and perceptions of DSM. Problem-solving skills to manage uncontrolled T2DM and responsiveness to encourage patient compliance could improve and empower individuals with T2DM in DSM practices [41]. In this way, family members will be prepared to tackle and understand difficulties, acquire the property of tackle and understand difficulties, acquire the objectively address any issues that may arise, thereby enhancing the overall functioning of the family [42]. Inadequate DSM has been linked to inadequate social support from family members, including dyads. In fact, family members provide emotional support in problem-solving and assist patients in accommodating, reminding, motivating, and collaborating on behavior changes and declining quality of life [43]. Therefore, the nurses need to implement the IFSM education program through counseling services for individuals with T2DM, and caregivers can increase DSM scores by providing problem-solving and motivation. In the present study, we found that with the IFSM education program, there was a significant decrease in diabetes distress among adults with uncontrolled diabetes. Regarding diabetes distress, we should remember that diabetic patients have to deal with numerous roles and responsibilities, bringing about competing priorities, stress, and life-disease conflicts [44,45]. Thus, individuals experiencing distress are more prone to significant T2DM symptom burden, occupational incapacity, and increased medical costs [46,47]. High levels of distress were significantly correlated with poor DSM, such as lower levels of physical activity, glucose manage 18 nt, and diet [48]. Participation in DSM education contributed to a 0.25 % decrease in HbA1c with a change in diabetes distress [49]. A systematic review demonstrated that a self-management education program involving US Latino adult patients with T2DM and their families significantly decreased patients' diabetes distress scores [50]. Support from family members significantly decreases diabetes distress and glycemic control in individuals. Accordingly, individuals with T2DM require additional exposure to integration-based in-terventions with family support to reduce their diabetes distress # Y.A. Rias, R. Thato, M. Teli et al. **Table 2**Comparison of triglyceride-glucose index, diabetes self-management, and diabetes distress between two groups (n = 68). | Variables | Pre-intervention | Post-intervention | Time | | Group | | Interaction (Group×Time) | | |--|-----------------------|-----------------------|----------------------|---------|---------------------|-------|--------------------------|--------| | | | | β (95 %CI) | P | β (95 %Ω) | P | β (95 %Ω) | P | | Triglyceride-glucose in | dex | | | | | | | | | Intervention group | 8.25 ± 0.91 | 6.00 ± 0.65 | -0.27 (-0.56, 0.02) | 0.071 | -0.15 (-0.59, 0.30) | 0.515 | -1.97 (-2.41, -1.53) | < 0.00 | | Control group | 8.39 ± 0.98 | 8.13 ± 0.85 | | | | | | | | t | -0.64 | -11.52 | | | | | | | | P | 0.523 | < 0.001 | | | | | | | | Diabetes self-managen
Dietary control | ient | | | | | | | | | Intervention group | 3.47 ± 1.26 | 9.36 ± 1.81 | 1.12 (0.56, 1.68) | < 0.001 | 0.09 (-0.46, 0.64) | 0.752 | 4.77 (3.85, 5.62) | < 0.00 | | Control group | 3.38 ± 1.07 | 4.50 ± 1.14 | 1.12 (0.50, 1.00) | <0.001 | 0.05 (-0.40, 0.04) | 0.732 | 4.77 (3.83, 3.02) | < 0.00 | | t | 0.31 | 13.26 | | | | | | | | P | 0.757 | <0.001 | | | | | | | | Physical activity | | | | | | | | | | Intervention group | 3.12 ± 0.77 | 7.00 ± 1.21 | 0.79 (0.27, 1.32) | 0.003 | -0.12 (-0.55, 0.31) | 0.592 | 3.09 (2.34, 3.84) | < 0.00 | | Control group | 3.24 ± 1.05 | 4.03 ± 0.94 | | | , , | | , , | | | t | -0.53 | 11.20 | | | | | | | | P | 0.599 | < 0.001 | | | | | | | | Glucose management | | | | | | | | | | Intervention group | 9.68 ± 1.21 | 16.03 ± 1.24 | 1.53 (0.85, 2.21) | < 0.001 | 0.12 (-0.35, 0.59) | 0.622 | 4.82 (3.98, 5.67) | < 0.00 | | Control group | 9.56 ± 0.86 | 11.09 ± 2.19 | | | | | | | | t | 0.49 | 11.43 | | | | | | | | P | 0.629 | < 0.001 | | | | | | | | Health-care use | | | | | | | | | | Intervention group | 3.38 ± 0.82 | 7.71 ± 0.76 | 0.32 (-0.02, 0.67) | 0.065 | -0.29 (-0.70, 0.11) | 0.155 | 4.00 (3.52, 4.49) | < 0.00 | | Control group | 3.68 ± 0.91 | 4.00 ± 0.49 | | | | | | | | t | -1.40 | 23.86 | | | | | | | | P | 0.166 | < 0.001 | | | | | | | | Total diabetes self-mar | | 40.00 2.21 | 2 77 (2 67 4 96) | -0.001 | 0.21 (1.17 0.76) | 0.070 | 16.68 (15.33, 18.00) | -0.00 | | Intervention group | 19.65 ± 2.28 | 40.09 ± 2.21 | 3.77 (2.67, 4.86) | < 0.001 | -0.21 (-1.17, 0.76) | 0.676 | 16.68 (15.23, 18.09) | < 0.00 | | Control group
t | 19.85 ± 1.81
-0.41 | 23.62 ± 2.74
27.29 | | | | | | | | P | 0.682 | <0.001 | | | | | | | | Diabetes distress | 0.082 | <0.001 | | | | | | | | Emotional burden | | | | | | | | | | Intervention group | 20.55 ± 2.49 | 11.09 ± 1.93 | -1.47 (-1.97, -0.97) | < 0.001 | -0.09 (-1.13, 0.95) | 0.868 | -8.00 (-9.04, -6.96) | < 0.00 | | Control group | 20.65 ± 1.92 | 19.18 ± 1.92 | -1.47 (-1.57, -0.57) | <0.001 | -0.03 (-1.13, 0.33) | 0.000 | -8.00 (-5.04, -0.50) | <0.00 | | t | -0.16 | -16.26 | | | | | | | | P | 0.871 | < 0.001 | | | | | | | | Health professional-rel | | | | | | | | | | Intervention group | 19.44 ± 1.89 | 8.94 ± 1.56 | -0.89 (-0.81, 0.63) | 0.809 | 0.53 (-0.28, 1.34) | 0.200 | -10.41 (-11.50, -9.33) | < 0.00 | | Control group | 18.97 ± 1.51 | 18.82 ± 2.63 | | | , | | , | | | t | 1.26 | -18.84 | | | | | | | | P | 0.261 | < 0.001 | | | | | | | | Regimen-related distre | ess | | | | | | | | | Intervention group | 20.85 ± 2.19 | 11.15 ± 1.31 | -2.27 (-2.73, -1.80) | < 0.001 | 0.38 (-0.53, 1.30) | 0.412 | -7.44 (-8.35, 6.54) | < 0.00 | | Control group | 20.47 ± 1.67 | 18.21 ± 1.39 | | | | | | | | t | 0.81 | -21.60 | | | | | | | | P | 0.422 | < 0.001 | | | | | | | | Interpersonal distress | | | | | | | | | | Intervention group | 12.07 ± 1.61 | 6.59 ± 1.33 | -0.62 (-1.12, -0.12) | 0.016 | 0.43 (-0.27, 1.12) | 0.228 | -4.87 (-5.62, -4.12) | < 0.00 | | Control group | 11.65 ± 1.35 | 11.03 ± 1.68 | | | | | | | | t | 1.19 | -12.10 | | | | | | | | P | 0.240 | < 0.001 | | | | | | | | Total diabetes distress | ma a 4 a 4 a | | | | 4.00 / 0.00 0.00 | | 00 74 / 00 77 00 00 | | | Intervention group | 72.94 ± 3.16 | 37.76 ± 3.20 | -4.44 (-5.64, -3.25) | < 0.001 | 1.27 (-0.23, 2.76) | 0.097 | -30.74 (-32.57, 28.90) | < 0.00 | | Control group | 71.68 ± 3.22 | 67.24 ± 4.51 | | | | | | | | t | 1.64 | -31.18 | | | | | | | | P 36 | 0.107 | < 0.001 | | | | | | | Note: Data are Mean \pm SD. t: independent sample t-test. β : regression coefficient. β values and 95 %CIs were estimated using generalized estimating equations. [51]. In an investigation in China, empowerment self-management interventions significantly reduced diabetes distress and emotional and regimen distress [52]. The dyadic health providers, such as physicians or nurses, helped adults with uncontrolled T2DM understand their strengths and weaknesses as they moved along the self-management path. Specifically, dyadic patient-family interactions would create a supportive and empowering environment, causing the distress score to decline [52]. However, two previous investigations demonstrated that DSM education programs were not associated with diabetes distress [53,54]. This inconsistency might have arisen because the education program neglected to incorporate psychological lessons with the psychological effects of diabetes by transforming negative perspectives into positive ones. Furthermore, we noted that it was necessary to have reflection sessions where patients could talk about their views, correct negative perceptions, and hear success stories from those who had successfully managed their blood sugar levels [10,52]. Thus, these findings suggest that interventions should combine patient and family to reduce diabetes distress, which could potentially decline HbA1c among individuals with T2DM. Overall, the intervention's unique aspect was its alignment with the valued concept of familial involvement. By engaging family members as care partners rather than passive observers, the intervention helf 50 to create a shared sense of respons 17 ity and solidarity, which has been shown to improve long-term adherence to diabetes self-care behaviors. The findings underscore the importance of the IFSM education program, particularly relevant in Indonesia's collectivist cultures, where family influence strongly shapes individual health behaviors, such as improving diabetes self-management and alleviating TyG index and diabetes distress. ### 5. Limitations The present study has several limitations. First, although it was necessary to evaluate the immediate impact after the 8-week intervention, an investigation of long-term follow-up is still required. In addition, the current study was unable to measure HbA1c due to a longer detection time of more than three months and increased cost. Additionally, all enrolled respondents were of Javanese and Muslim ethnicity, which may have limited the assessment of occupational status, potentially reducing the generalizability of our findings. Future studies should include home visits as a critical component of therapeutic success. The IFSM (patient-family dyads) education program successfully reduced TvG and diabetes distress in individuals with uncontrolled T2DM while also improving DSM scores, attesting to the program's feasibility in advanced T2DM. To facilitate the care of individuals with diabetes, nurses can implement a protocol that enables them and their families to manage their disease. In clinical care, nurses can acquire and implement IFSM strategies to improve self-management, TyG, and diabetes. Nurses should efficiently implement the IFSM education initiative to alleviate
the long-term burden on primary care services potentially. Family support for individuals with T2DM may lessen the burden on diabetes educators and healthcare services by offering supplementary assistance and potentially mitigating complications. Moreover, the setting implemented in community health clinics provided a model hospitals could adopt through an integrated discharge planning procedure. # CRediT authorship contribution statement Yohanes Andy Rias: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Funding acquisition, Writing - original draft, Writing - review & editing, Project administration. Ratsiri Thato: Conceptualization, Methodology, Validation, Data curation, Funding acquisition. Writing review & editing, Supervision. Margareta Teli: Conceptualization, Method 54 y., Data curation, Writing - review & editing. Ferry Efendi: Methodology, Validation, Writing - review & editing. # Data availability statement The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request. This work was supported by a Seco 34 Century Fund Chulalongkorn University-postdoctoral fellow. The funding organization had no role in the design of se survey, implementation of the intervention, data collection, data analysis, interpretation of the results, or the decision to submit this manuscript for publication. All aspects of the study were conducted independently by the all authors. ### Declaration of competing interest The authors have declared no conflict of interest. ### Acknowledgments We would like to express our gratitude to Second Century Fund Chulalongkorn University Chulalongkorn University, and all the respondents participating in the study. # Appendices. Supplementary data Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijnss.2025.06.001 - [1] Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan BB. et al. IDF - Sun H, Saedi P, Karruanga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global. regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183: 109119. https://doi.org/10.1016/j.diabres.2021.109119. American Diabetes Association Professional Practice Committee. 2. diagnosis and classification of diabetes: standards of care in diabetes-2024. Diabetes Care 2024;47(Suppl 1):S20-42. https://doi.org/10.2337/dc24-S002. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes deration diabetes atlas. Diabetes Res Clin Pract 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843. - Pamungkas RA, Chamroonsawasdi K. Self-management based coaching pro-gram to improve diabetes mellitus self-management practice and metabolic markers among uncontrolled type 2 diabetes mellitus in Indonesia: a quasi-experimental study. Diabetes Metabol Syndr 2020;14(1):53–61. https://doi - [5] Dimore AL, Edosa ZK, Mitiku AA. Glycemic control and diabetes complications among adult type 2 diabetic patients at public hospitals in Hadiya zone, Southern Ethiopia. PLoS One 2023; 18(3):e0282962. https://doi.org/10.1371/ - journal pone.028,2962. Rakhis Sr SAB, AlDuwayhis NM, Aleid N, AlBarrak AN, Aloraini AA, Glycemic control for type 2 diabetes mellitus patients: a systematic review. Cureus 2022;14(6):1–8. https://doi.org/10.7759/cureus.26180. Ryugen VB, This HP, Ryugen TX, Pham NTI, Ryugen VVH, Le CV, Diabetes self-management and its associated factors among patients with diabetes in central Vietnam: a cross-sectional study. PLoS One 2022;17(7):e0270901. https://doi.org/10.1371/journal.pone.0270901. - https://doi.org/10.1371/journal.pone.02/0901. Alexandre K, Campbell J, Bugnon M, Henry C, Schaub C, Serex M, et al. Factors influencing diabetes self-management in adults: an umbrella review of systematic reviews. JBI Evid Synth 2021;19(5):1003–118. https://doi.org/ - [9] Carpenter R, DiChiacchio T, Barker K. Interventions for self-manageme (a) Carpenter K, Dichiacchio I, Barker K. Interventions for self-management of type 2 diabetes: an integrative review. Int J Nurs Sci 2019;6(1):70-91. https://doi.org/10.1016/j.ijinss.2018.12.002. [10] Ryan P, Sawin KJ. The individual and family self-management theory: - background and perspectives on context process, and outcomes. Nurs Outlook 2009;57(4). https://doi.org/10.1016/j.outlook.2008.10.004. 217-25. - e 6. Ill Rias Y, Rosa E, Yuniarti FA. Pengembangan model konservasi discharge planning terstruktur terhadap individual and family self-management diabetic foot ulcer. Indonesian J Nurs Pract 2016;3(1):1-27. https://doi.org/10.18196/JINP.V311.2218. Ill Pamungkas RA, Chamroonsawasdi K, Vatanasomboon P, Charupoonphol P, Barriers to effective diabetes mellitus self-management (DMSM) practice for glycenic uncontrolled type 2 diabetes mellitus (2014). a sodio cultural context of Indonesian communities in west Sulawesi. Eur J Inwestig Health Psychol Educ 2019;10(1):250.6.51 https://doi.org/10.1000/pii/ben10010010021 - Context of indonesaria. Lon Invests quarters, Lot Invest, great real Psychol Educ 2019;10(1):250-61. https://doi.org/10.3390/ejihpe10010020. McEwen MM, Pasvogel A, Murdaugh C, Hepworth J. Effects of a family-based diabetes intervention on behavioral and biological outcomes for Mexican American adults. Diabetes Educ 2017;43(3):272–85. https://doi.org/10.1177/ - [14] Teli M, Thato R, Hasan F, Rias YA. Effectiveness of family-based diabetes management intervention on glycated haemoglobin among adults with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Biol Res Nurs 2024;26(2):315–33. https://doi.org/10.1177/10998004231218887. - [15] Willaing I, Rogvi SA, Bøgelund M, Almdal T, Schiøtz M. Recall of HbA1c and self-management behaviours, patient activation, perception of care and - diabetes distress in Type 2 diabetes. Diabet Med 2013;30(4):e139-42. - [16] Liu EQ, Weng YP, Zhou AM, Zeng CL. Association between triglyceride-glucose index and type 2 diabetes mellitus in the Japanese population: a secondary analysis of a retrospective cohort study. BioMed Res Int secondary analysis of 2020;2020:2947067, http - [17] Lin ZY, He JN, Yuan S, Song CX, Bian XH, Yang M, et al. Glycemic control and cardiovascular outcomes in patients with diabetes and coronary artery dis-ease according to triglyceride-glucose index: a large-scale cohort study. Cardiovasc Diabetol 2024;23(1):11. https://doi.org/10.1186/s12933-023- - 02112-y. 18] Selvi NMK, Nandhini S, Sakthivadivel V, Lokesh S, Srinivasan AR, Sumathi S, Association of triglyceride-glucose index (TyG index) with HbA1c and insulin resistance in type 2 diabetes mellitus. Maedica (Bucur) 2021;16(3):375–81. https://doi.org/10.1657/dlmaedica.2021.16.3.375 - https://gooloorg/10/26574/maedica.2021.16.3.375. das YA, Kurniawan AL, Chang CW, Gordon CJ, Tsai HT. Synengistic effects of egular walking and alkaline electrolyzed water on decreasing inflammation and oxidative stress, and increasing quality of life in individuals with type 2 liabetes: a community based randomized controlled tral. Antioxidants. 2020:9(10):946. - [20] Theodoropoulou KT, Dimitriadis GD, Tentolouris N, Darviri C, Chrousos GP. Diabetes distress is associated with individualized glycemic control in adults with type 2 diabetes mellitus. Hormones (Basel) 2020:19(4):515–21, https:// - doi.org/10.1007/s42000-020-00237-3. [21] Perrin NE, Davies MJ, Robertson N, Snoek FJ, Khunti K. The prevalence of diabetes-specific emotional distress in people with Type 2 diabetes: a sys-tematic review and meta-analysis. Diabet Med 2017;34(11):1508–20. - https://doi.org/10.1111/dme.13448. Park HS, Cho Y, Seo DH, Ahn SH, Hong S, Suh YJ, et al. Impact of diabetes distress on glycemic control and diabetic complications in type 2 diabetes mellitus. Sci Rep 2024;14(1):5568. https://doi.org/10.1038/s41598-024-65001.0. - [23] Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: undated Schulz KP, Altman DC, Moner D, Group E. CONSONT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 2010;340: c332. https://doi.org/10.1136/bmj.c332. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D. et al. Better - reporting of interventions: template for intervention description and repli-cation (TIDieR) checklist and guide. BMJ 2014;348. https://doi.org/10.1136 - [25] American Association Diabetes. 6. glycemic targets: standards of medical care in diabetes-2019. Diabetes Care 2019;42(Suppl 1):S61-70. https://doi. - [org] 10.2337/dc19-5006. [26] Wichti N. Mnatzaganian G. Courtney M., Schulz P. Johnson M. Randomized controlled trial of a family-oriented self-management program to improve self-efficacy, glycemic control and quality of lile among Thai individuals with Type 2 diabetes. Diabetes Res Clin Pract 2017;123:37-48. https://doi.org/ - Indonesian Endocrinology Association. Guidelines for the management and prevention of type 2 diabetes mellitus in Indonesia 2021: PB. PERKENI; 2021 https://linbarkepi.pri.di/bws-content/unloads/20/1111/23-10-21-Websites -DMT2 - [28] Davis J, Fischl AH, Beck J, Browning L, Carter A, Condon JE, et al. National standards for diabetes self-management education and support. Sci Diabetes Self Manag Care 2022;48(1):44–59. https://doi.org/10.1177/ Manag Care 2022;48(1):44–59. - [29] Yaagoob E, Lee R, Stubbs M, Shuaib F, Johar R, Chan S. WhatsApp-based - Yaagoob E, Lee R, Stubbs M, Shuaib F, Johar R, Chan S. WhatsApp-based intervention for people with type 2 diabetes: a randomized controlled trial. Nurs Health Sci 2024;26(2):e13117. https://doi.org/10.1111/nhs.13117. Rias YA, Gordon C, Nius F, Wiratama BS, Chang CW, Tsai HT. Secondhand
smoke correlates with elevated neutrophil-lymphocyte ratio and has a synergistic effect with physical inactivity on increasing susceptibility to type 2 diabetes mellitus: a community-based case control study. Int J Environ Res Public Health 2020;17(16):5606. https://doi.org/10.3390/jiepphi7165696. Ras YA, Tsai HT, Thato R, Apriyanto BS, Chou KR, Ho SC, et al. Synergistic interactions of insufficient physical activity and a high systemic immune-inflammation index on psychological problems in Indonesians with type 2 diabetes mellitus. Biol Res Nurs 2023;25(4):516-26. https://doi.org/10.1177/10098004231162050. - [32] Schmitt A. Gahr A. Hermanns N. Kulzer B. Huber I. Haak T. The diabetes selfmanagement questionnaire (DSMQ): development and evaluation of an in-strument to assess diabetes self-care activities associated with glycaemic control. Health Qual Life Outcome 2013;11:138. https://doi.org/10.1186/ - [33] Polonsky WH, Fisher L, Earles J, James Dudl R, Lees J, Mullan J, et al. Assessing - [35] Khan SH, Sobia F, Niazi NK, Manzoor SM, Fazal N, Ahmad F. Metabolic clustering of risk factors: evaluation of triglyceride-glucose index (TyG) - index) for evaluation of insulin resistance. Diabetol Metab Syndr 2018;10:74. - [36] Ma ML, Liu HB, Yu J, He SL, Li PP, Ma CX, et al. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health s 2020; 19(1); 121, ht - Sánchez-Escudero V, García Lacalle C, González Vergaz A, Mateo LR, Marqués Cabrero A The triglyceride/glucose index as an insulin resistance marker in the pediatric population and its relation to eating habits and physical activity. Endocrinol Diabetes Nutr (Engl Ed) 2021;68(5):296–303. https://doi. - org/10.1016/j.endien.2020.08.015. Sergi D. Spaggiari R. Dalla Nora E. Angelini S. Castaldo F. Omenetto A. et al. HOMA-IR and TyG index differ for their relationship with dietary, anthropometric, inflammatory factors and capacity to predict cardiovascular risk. Diabetes Res Clin Pract 2025/222:112103. https://doi.org/10.1016/j. - [39] Dong CY, Liu RY, Huang ZY, Yang Y, Sun SY, Li R. Effect of exercise interventions based on family management or self-management on glycaemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2023;15(1):232. https://doi.org/ 10.1186/s13098-023-01209-4, [40] Cai C, Hu J. Effectiveness of a family-based diabetes self-management - car c, rin J. Enterveniess of a farminy-based diabetes sentiningement educational intervention for Chinese adults with type 2 diabetes in Wuhan, China. Diabetes Educ 2016;42(6):697–711. https://doi.org/10.1177/0145721716674325. - 0145721716674325. [41] Adi Pamungkas R, Chamroonsawasdi K, Usman AM. Unmet basic needs and family functions gaps in diabetes management practice among Indonesian communities with uncontrolled type 2 diabetes: a qualitative study. Malays Fam Physician 2021;16(3):23-35. https://doi.org/10.51866/63a123. [42] Deepradit S, Powwattana A, Lagampan S. Thiangtham W. Effectiveness of a family-based program for post-stroke patients and families: a cluster randomized controlled trial. Int J Nurs Sci 2023;10(4):446-55. https://doi.org/10.1016/j.iii.pss.2023.09(2) - [43] Qi XY, Xu, Chen GY, Liu H, Liu JJ, Wang JH, et al. Self-management behavior and fasting plasma glucose control in patients with type 2 diabetes mellitus over 60 years old: multiple effects of social support on quality of life. Health Qual Life Outcome 2021;19(1):254. https://doi.org/10.1186/s12955-021- - [44] Lorig K. Ritter PL. Villa F. Piette ID. Spanish diabetes self-management with without automated telephone reinforcement; two randomized trials. - Diabetes Care 2008;31(3):408-41. https://doi.org/10.2337/ido7-1313. Welch G, Zagarins SE, Santiago-Kelly P, Rodriguez Z, Bursell SE, Rosal MC, et al. An Internet-based diabetes management platform improves team care and outcomes in an urban Latino population. Diabetes Care 2015;38(4): - [47] Fisher L, Polonsky WH, Hessler D. Addressing diabetes distress in clinical care: a practical guide. Diabet Med 2019;36(7):803–12. https://doi.org/ 10.1111/dme.13967. - [48] Misra R. Shawley-Brzoska S. Khan R. Kirk BO. Wen SI. Samhamoorthi II. Addressing diabetes distress in self-management programs: results of a randomized feasibility study. J Appalach Health 2021;3(3):68–85. https://doi - [49] Zagarins SE, Allen NA, Garb JL, Welch G. Improvement in glycemic control following a diabetes education intervention is associated with change in diabetes distress but not change in depressive symptoms. J Behav Med - O2012;35(3):299–304. https://doi.org/10.1007/s10865-011-9359-z. Gutierrez AP, Fortmann AL, Savin K, Clark TL, Gallo LC. Effectiveness of dia-betes self-management education programs for US latinos at improving emotional distress: a systematic review. Diabetes Educ 2019;45(1):13–33. - https://doi.org/10.1177/0145721718819451. [51] Lee AA, Piette JD, Heisler M, Rosland AM. Diabetes distress and glycemic control: the buffering effect of autonomy support from important family members and friends. Diabetes Care 2018;41(6):1157–63. https://doi.org/ - [52] Cheng L, Sit IWH, Choi KC, Chair SY, Li XM, Wu YN, et al. The effects of an psychological distress, and quality of life in patients with poorly controlled type 2 diabetes: a randomized controlled trial. Int J Nurs Stud 2021;116: 103407. https://doi.org/10.1016/j.ijnurstu.2019.103407. [53] Heise M, Heidemann C, Baumert J, Du Y, Frese T, Avetisyan M, et al. Struc- - tured diabetes self-management education and its association with perceived diabetes knowledge, information, and disease distress: results of a nationwide population-based study. Prim Care Diabetes 2022;16(3):387–94. - https://doi.org/10.1016/j.pod.2022.03016. [54] Rosland AM, Piette JD, Tivrodi R, Lee A, Stoll S, Youk AO, et al. Effectiveness of a health coaching intervention for patient-family dyads to improve outcomes among adults with diabetes: a randomized clinical trial, JAMA Netw Open 2022; 3(11):e2237960. https://doi.org/10.1001/jamanetworkopen.2022.37960. Effectiveness of a theory-based tailored individual and family self- management education in adults with uncontrolled diabetes: A randomized controlled trial | ORIGINA | ALITY REPORT | | | | | |---------|---|--|---|------------------|-------| | SIMILA | 5%
RITY INDEX | 12% INTERNET SOURCES | 9%
PUBLICATIONS | 5%
STUDENT P | APERS | | PRIMAR | Y SOURCES | | | | | | 1 | Dimitriad
Darviri, C
distress
glycemic | tina Th. Theodo
dis, Nikolaos Te
George P. Chrou
is associated wi
control in adul
', Hormones, 20 | ntolouris, Chri
Isos. "Diabetes
th individualiz
ts with type 2 | stina
s
ed | 1% | | 2 | Submitte
Student Paper | ed to Chulalong | korn Universit | у | 1 % | | 3 | WWW.MO | • | | | 1% | | 4 | Submitte
Arlingtor
Student Paper | | rsity of Texas a | at | 1 % | | 5 | www.do | vepress.com | | | <1% | | 6 | cardiab.k | oiomedcentral.c | com | | <1% | | 7 | WWW.res | searchsquare.co | om | | <1% | | 8 | research
Internet Source | repository.mur | doch.edu.au | | <1% | | 9 | assets-el | u.researchsqua
^e | re.com | | <1% | | 10 | bcn.iums | | | | <1% | | 11 | eurjther.com
Internet Source | <1% | |----|--|-----| | 12 | onlinelibrary.wiley.com Internet Source | <1% | | 13 | Submitted to Online Education Services Student Paper | <1% | | 14 | research.edgehill.ac.uk Internet Source | <1% | | 15 | Sangmo Hong, Kyungdo Han, Cheol-Young
Park. "The triglyceride glucose index is a
simple and low-cost marker associated with
atherosclerotic cardiovascular disease: a
population-based study", BMC Medicine, 2020
Publication | <1% | | 16 | www.etf.dk
Internet Source | <1% | | 17 | Fekadu Aga, Sandra B Dunbar, Tedla Kebede,
Rebecca Gary. " | <1% | | | The role of concordant and discordant comorbidities on performance of self-care behaviors in adults with type 2 diabetes: a systematic review | | | | ", Diabetes, Metabolic Syndrome and Obesity:
Targets and Therapy, 2019 | | | 18 | hydra.hull.ac.uk
Internet Source | <1% | | 19 | academic.oup.com
Internet Source | <1% | | 20 | www.biorxiv.org Internet Source | <1% | | 21 | Mao-Jun Liu, Sun-Min Xiang, Xin-Qun Hu.
"Triglyceride glucose-body mass index is | <1% | associated with cardiovascular outcomes and overall mortality in type-2 diabetes mellitus patients", World Journal of Diabetes, 2025 Publication | 22 | dspace.stir.ac.uk Internet Source | <1% | |----|---|-----| | 23 | www.researchgate.net Internet Source | <1% | | 24 | Fariba Alaei-Shahmiri, Mario J. Soares,
Maryam Lahouti, Yun Zhao, Jill Sherriff. "High-
dose thiamine supplementation may reduce
resting energy expenditure in individuals with
hyperglycemia: a randomized, double – blind
cross-over trial", Journal of Diabetes &
Metabolic Disorders, 2020
Publication | <1% | | 25 | Silvia Rosalinda, Farapti Farapti, Afifah Nurma
Sari, Dhandapani Shanthi. "Ambang Rasa
Manis dan Kadar Glukosa Darah Puasa Pada
Remaja di Surabaya Indonesia", Amerta
Nutrition, 2024
Publication |
<1% | | 26 | doaj.org
Internet Source | <1% | | 27 | mdpi-res.com
Internet Source | <1% | | 28 | Submitted to Queen's University of Belfast Student Paper | <1% | | 29 | Stephanie Gilbertson-White, Chi W. Yeung,
Seyedehtanaz Saeidzadeh, Hannah Tykol,
Praveen Vikas, Ashley Cannon. "Engaging
Stakeholders in the Development of an
eHealth Intervention for Cancer Symptom
Management for Rural Residents", The
Journal of Rural Health, 2018 | <1% | | 30 | bmcophthalmol.biomedcentral.com Internet Source | <1% | |----|--|---------| | 31 | scholarworks.sjsu.edu
Internet Source | <1% | | 32 | www.jmir.org Internet Source | <1% | | 33 | www.nature.com Internet Source | <1% | | 34 | www.researchprotocols.org Internet Source | <1% | | 35 | Eman S Soliman, Rania Naguib, Fatima
Neimatallah, Najd AlKhudhairy et al.
"Diabetes-related distress among type 1 and
type 2 diabetes patients in Saudi Arabia",
Eastern Mediterranean Health Journal, 2025
Publication | <1% | | 36 | asja.springeropen.com Internet Source | <1% | | 37 | journals.sagepub.com
Internet Source | <1% | | 38 | link.springer.com Internet Source | <1% | | 39 | ouci.dntb.gov.ua Internet Source | <1% | | 40 | publikationen.ub.uni-frankfurt.de Internet Source | <1% | | 41 | pubmed.ncbi.nlm.nih.gov Internet Source | <1% | | 42 | thejournalofheadacheandpain.biomedcentral.c | com 1 % | | 43 | Leah Coles. "Clinical Nutrition - The Interface
Between Metabolism, Diet, and Disease",
Apple Academic Press, 2019 | <1% | | 44 | Mirella Youssef Tawfik, Rehab Ali Mohamed. "The impact of communicating cardiovascular risk in type 2 diabetics on patient risk perception, diabetes self-care, glycosylated hemoglobin, and cardiovascular risk", Journal of Public Health, 2016 Publication | <1% | |----|---|-----| | 45 | Polly Ryan, Kathleen J. Sawin. "The Individual and Family Self-Management Theory: Background and perspectives on context, process, and outcomes", Nursing Outlook, 2009 Publication | <1% | | 46 | assets.researchsquare.com Internet Source | <1% | | 47 | bmcprimcare.biomedcentral.com Internet Source | <1% | | 48 | bmcpublichealth.biomedcentral.com Internet Source | <1% | | 49 | diabetesatlas.org
Internet Source | <1% | | 50 | dmsjournal.biomedcentral.com Internet Source | <1% | | 51 | eurjmedres.biomedcentral.com Internet Source | <1% | | 52 | files.magicapp.org Internet Source | <1% | | 53 | jeatdisord.biomedcentral.com
Internet Source | <1% | | 54 | selfdeterminationtheory.org Internet Source | <1% | | 55 | vital.seals.ac.za:8080 Internet Source | <1% | | 56 | worldwidescience.org Internet Source | <1% | |----|--|-----| | 57 | www.clinicaltrials.gov Internet Source | <1% | | 58 | www.diva-portal.org Internet Source | <1% | | 59 | Eugene Merzon, Jeremy Grossman, Shlomo
Vinker, Ilia Merhasin, Shmuel Levit, Avivit
Golan-Cohen. "Factors associated with
withdrawal from insulin pump therapy: A
large-population-based study",
Diabetes/Metabolism Research and Reviews,
2020
Publication | <1% | | 60 | Lawrence Mbuagbaw, Ronnie Aronson,
Ashleigh Walker, Ruth E. Brown, Naomi
Orzech. "The LMC Skills, Confidence &
Preparedness Index (SCPI): development and
evaluation of a novel tool for assessing self-
management in patients with diabetes",
Health and Quality of Life Outcomes, 2017
Publication | <1% | | 61 | Meena Hariharan, Meera Padhy, Usha
Chivukula. "Health Psychology - Contributions
to the Indian Health System", Routledge, 2022 | <1% | | 62 | Ron Stout, Daniel Reichert, Rebecca Kelly. "Lifestyle Medicine and the Primary Care Provider - A Practical Guide to Enabling Whole Person Care", CRC Press, 2025 Publication | <1% | | 63 | Song Zhao, Shikai Yu, Chen Chi, Ximin Fan,
Jiamin Tang, Hongwei Ji, Jiadela Teliewubai, Yi
Zhang, Yawei Xu. "Association between
macro- and microvascular damage and the
triglyceride glucose index in community- | <1% | # dwelling elderly individuals: the Northern Shanghai Study", Cardiovascular Diabetology, 2019 Publication Exclude quotes On Exclude matches Off Exclude bibliography On # Effectiveness of a theory-based tailored individual and family self- management education in adults with uncontrolled diabetes: A randomized controlled trial | GRADEMARK REPORT | | |------------------|------------------| | FINAL GRADE | GENERAL COMMENTS | | /100 | | | PAGE 1 | | | PAGE 2 | | | PAGE 3 | | | PAGE 4 | | | PAGE 5 | | | PAGE 6 | | | PAGE 7 | | | PAGE 8 | |